TABLE VI. Analogous average distances and ranges in β -Ga₂O₃ and in yttrium-iron garnet.

		β -Ga ₂ O ₃			YIGa	
```	Metal-oxygen distances	- 2	Averages	Range	Averages	Range
	Octahedral Tetrahedral		2.00 A 1.83	1.95–2.08 A 1.80–1.85	2.00 A 1.88	All equal All equal
O-O distance	25					
	In octahedron In tetrahedron		2.84 3.02	2.67-2.90 2.93-3.13	2.84 3.06	2.68–2.99 A 2.87–3.16

^a S. Geller and M. A. Gillco, J. Phys. Chem. Solids 3, 30 (1957); 9, 235 (1959).

## 2. Possibility of Disorder

That the structure is ordered appears to be established by the paramagnetic-resonance work by Peter and Schawlow² on  $Cr^{3+}$ -ion-doped  $\beta$ -Ga₂O₃, in which it is found that the Cr3+ ions prefer only one set of octahedral sites. It is likely that these ions replace the Ga_{II}³⁺ ions in octahedrally coordinated sites: There is not enough space for foreign ions in the remaining octahedrally coordinated holes. Thus it is improbable that there is the type of disorder which would allow drastic change in the environment of any of the Ga_I³⁺ and Ga113+ ions.

## 3. Importance of $\beta$ -Ga₂O₃ Structure Relative to Substitution of Ga³⁺ and Al³⁺ for Fe³⁺ Ions in **Yttrium-Iron Garnet**

The Ga³⁺ and Fe³⁺ ions have very similar crystal chemistry. Both ions have spherical electronic configuration and are of very nearly the same size, the Ga³⁺ ion being somewhat smaller than Fe³⁺ ion in most structures. The relative radii derived from the perovskitelike compounds⁸ put the  $Ga^{3+}$  ion CN(6) radius at 0.015 A less than that of the Fe³⁺ ion. This does not mean that average metal-oxygen distances will be exactly the same in different structures. For example, the relative ionic radii derived from the perovskitelike compounds are applicable to the garnets, 5,23,24 but the CN(6) metal-oxygen distances in the garnets are uniformly somewhat larger than the sums of these radii.

Although the structure of yttrium-gallium garnet,  $\{Y_3\}$  [Ga₂](Ga₃)O₁₂ has not yet been refined, that of yttrium-iron garnet has²⁵; it is of interest to compare some analogous distances in this garnet structure with those of  $\beta$ -Ga₂O₃. The averages and ranges of these analogous distances are compared in Table VI. It is seen that the average  $Ga_{II}$ —O distance in  $\beta$ -Ga₂O₃ is the same as the octahedral Fe-O distance in yttriumiron garnet. On the other hand, the average Ga_I-O

²³ S. Geller, R. M. Bozorth, M. A. Gilleo, and C. E. Miller, J. Phys. Chem. Solids 12, 111 (1960).
²⁴ S. Geller and D. W. Mitchell, Acta Cryst. 12, 936 (1959).
²⁵ S. Geller and M. A. Gilleo, J. Phys. Chem. Solids 3, 30 (1957).

(1957); 9, 235 (1959).

distance in  $\beta$ -Ga₂O₃ is substantially smaller than the tetrahedral Fe-O distance in the garnet. The average O-O distances of the octahedra in the two structures are equal but the average O-O distance in the GaO4 tetrahedron in  $\beta$ -Ga₂O₃ is shorter than the average O-O distance in the FeO4 tetrahedron of the garnet. Now from the least-squares calculations, the aforementioned differences are not significant. However, on a crystal chemical basis, there is reason to believe that the differences are meaningful.

We have shown previously⁵ that when the Ga³⁺ ion is substituted for the Fe³⁺ ion in the garnets, it shows a great preference for the tetrahedral [CN(4)] site. Also there is indication that when Fe³⁺ is substituted for the Ga³⁺ ion in yttrium-gallium garnet, it greatly prefers the octahedral [CN(6)] site.²⁶ We have also mentioned elsewhere that the ratios of effective size of ions in different coordinations may differ and probably depend largely on the nuclear charge and external electronic configuration of the atom.^{23,24} The ratios of tetrahedral to octahedral Fe-O distances in yttrium-iron garnet is 0.94; in Y3Al2Al3O1227 the analogous Al-O ratio is 0.91, in  $\beta$ -Ga₂O₃ the ratio of tetrahedral to octahedral average Ga-O distances is 0.91, in fact very similar to that of the Al-O distances in the aluminum garnet.

Now despite the fact that the Al³⁺ ion is much smaller than the Ga³⁺ ion, the quantitative site preference in the substituted iron garnets of the latter is very close to that of the former^{5,9}: this is in agreement with the above considerations.

## 4. Magnetic Aspects

If an  $/Fe_2O_3$  phase isostructural with  $\beta$ -Ga₂O₃ were found, it should be antiferromagnetic, because the GaI-O-GaII angles of about 123° (Table V) are (and presumably the FeI-O-FeII angles would be) favorable to superexchange interaction9,25,28,29 and the network of octahedra and tetrahedra involving these favorable angles continues throughout the structure.²⁹ Counting the possible significant magnetic interactions we find

²⁶ S. Geschwind, Phys. Rev. Letters 3, 207 (1959).

 ²⁷ E. Prince, Acta Cryst. 10, 787 (1957).
²⁸ M. A. Gilleo, Phys. Rev. 109, 777 (1958).

²⁹ M. A. Gilleo, J. Phys. Chem. Solids (to be published).